BEFORE THE

PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION UNITED STATES DEPARTMENT OF TRANSPORTATION WASHINGTON, D.C.

)

)

)

Pipeline Safety: Information Collection Activities, Revision to Gas Distribution Annual Report

Docket PHMSA-2013-0004

COMMENTS OF THE AMERICAN PUBLIC GAS ASSOCIATION

The American Public Gas Association ("APGA") is the national, non-profit association of publicly-owned natural gas distribution systems. APGA was formed in 1961 as a non-profit, non-partisan organization, and currently has approximately 700 members in 36 states. Overall, there are nearly 1,000 municipally-owned systems in the U.S. serving more than five million customers. Publicly-owned gas systems are not-for-profit retail distribution entities that are owned by, and accountable to, the citizens they serve. They include municipal gas distribution systems, public utility districts, county districts, and other public agencies that have natural gas distribution facilities. All APGA members must file distribution annual reports with the Pipeline and Hazardous Materials Safety Administration (PHMSA), therefore we are vitally interested in this rulemaking.

General Comments:

APGA supports the gathering of accurate and timely data about the natural gas distribution infrastructure. APGA and its members use PHMSA's data in a number of ways to promote pipeline safety. APGA merges the PHMSA distribution annual report data with data from the Energy Information Agency and APGA surveys to create a benchmarking program allowing members to compare their system's performance with national averages or a self-defined peer group. In addition, many APGA members rely on the Simple, Handy, Risk-based Integrity Management Plan (SHRIMP) Program to create their Distribution Integrity Management plans. The risk ranking model in SHRIMP includes an "Incident Probability" factor representing the probability that a failure due to any one of eight causes will result in death, injury or significant property loss (e.g. result in a reportable incident). This factor is calculated by dividing the number of reportable

incidents in PHMSA's Distribution Incident database due to a cause by the number of failures (leaks repaired) in PHMSA's Distribution Annual Report database due to that cause during the same time period.

This assumes that a reportable incident and the resulting leak repair are reported on the annual incident report and annual report, respectively, under the same cause category. As shown in Table 1 of these comments, this is not always the case because PHMSA's cause definitions are not consistent in the instructions for these two reports.

We believe that clarification of the leak classification descriptions is critical to pipeline safety programs. This is one of the most misunderstood and inconsistently applied aspects of Part 192. Inconsistent classification of leaks complicates and undermines the effectiveness of integrity management programs and all other uses of PHHMSA's data. Until the confusion and inconsistencies surrounding leak classifications is remedied, meaningful metrics on many of the leak categories will be difficult to develop.

APGA Recommendation: APGA strongly urges PHMSA to adopt consistent cause definitions for incident and annual reports, and anywhere else that such definitions are used within the pipeline safety program. Since only the annual report instructions are open for comment at this time, APGA has proposed changes to the annual report definitions that are, with a few exceptions noted below, consistent with the existing incident report cause definitions.

Specific Comments:

Part A, Section 7:

PHMSA proposal:

THIS REPORT PERTAINS TO THE FOLLOWING TYPE OF OPERATOR (Select Type of Operator based on the structure of the company included in this OPID for which this report is being submitted.):

- Municipal
- Privately Owned
- Other (e.g., cooperatives, public utility districts, etc.)

APGA Recommendation: PHMSA's proposed definitions of operator type are not consistent with standard industry practice. Public utility districts, for example, are typically considered municipal utilities. "Privately owned" usually excludes investor-owned utilities. The Energy Information Agency Form EIA-176 requires distribution operators to classify the operator type into 5 categories:

• Investor-owned,

- Municipally-owned (Including utility districts, authorities and commissions),
- Privately-owned,
- Cooperative and
- Other.

Unfortunately EIA does not provide any definitions for these categories, however distribution operators have been completing EIA Form 176 for many years and should be familiar with this classification system. APGA urges PHMSA to adopt the 5 operator types found in EIA Form 176. APGA uses PHMSA's annual report data and EIA's Form 176 data in a benchmarking program, so consistency between the EIA and PHMSA reports would be beneficial to APGA and, most likely, to other users of PHMSA's data as well.

Part B, Sections 1, 2 & 3:

PHMSA proposal:

PHMSA has added the terms "Reconditioned Cast Iron" in Section B1 and "Rehabilitated Cast Iron" in Sections B2 and B3. The Instructions define "reconditioned," but not "rehabilitated."

APGA Recommendation: APGA urges PHMSA to use the same terminology in all three sections. APGA suggests using the term "reconditioned" in all three sections since that term is defined in the instructions.

Part C Leaks Repaired By Cause

PHMSA proposal:

PHMSA is proposing minor changes to the eight leak cause categories and the definitions of leak causes in the instructions for completing the Distribution Annual Report. Under the current definitions, some leak repairs following reportable incidents would be reported under different cause categories on the Incident and Annual report forms. In general, the Incident Report instructions include much more guidance about the types of leaks that go into each cause category.

APGA Recommendation: APGA urges PHMSA to adopt more substantive changes to the leak cause definitions to make the definitions consistent with how incident cause is reported on the distribution Incident Report form. In Table 1 APGA has copied PHMSA's proposed cause definitions from this rulemaking (Column 2) and the existing Incident Report cause definitions from the Distribution Incident Report instructions (Column 3). In column 4 APGA has created new definitions for the 8 cause categories that are virtually identical to the current Incident Report Form instructions with a few exceptions noted below.

APGA urges PHMSA to replace the leak cause definitions in its proposed Distribution Annual Report form instructions with the definitions shown in Table 1, Column 4 of these comments.

TREATMENT OF VEHICULAR DAMAGE

PHMSA Proposal:

PHMSA's instructions specify that an incident caused by a vehicle striking a gas meter set would be reported on the Distribution Incident Report form as "Other Outside Force," however the repair of the leak would be reported on the Distribution Annual Report form as "Excavation."

APGA Recommendation: APGA believes that the Incident Report treatment of vehicular damage as "Other Outside Force" is preferable and encourages PHMSA to amend the instructions for the Annual Report form to be consistent with the Incident Report instructions.

NATURAL FORCE DAMAGE:

PHMSA proposal: The Incident Report instructions instruct operators to classify as "Other Outside Force" incidents in which high winds cause damage by impact from objects blown by wind, This is inconsistent with other statements in the instructions and forms that suggest the "Other Outside Force" category is intended for events in which humans are involved. That is certainly how users of the Annual and Incident report data will interpret these data.

APGA Recommendation: APGA suggests amending the Annual Report form instructions to include wind-blown object damage under the "Natural Force Damage" category as shown in Table 1, Column 4. When the Incident Report instructions are next open for comment APGA urges PHMSA to make similar changes to the Incident Report Form instructions.

EXCAVATION DAMAGE:

PHMSA proposal:

The Incident Report form instructions instruct operators to report as "Other Outside Force" " or "Natural Force Damage" any incidents caused by excavation damage that did not result in an immediate leak but rather failed sometime later. APGA believes that these incidents and leak repairs should both be reported as "Excavation Damage," unless the coating is damaged and a corrosion leak develops, in which case this should be classified as a corrosion leak.

APGA Recommendation: APGA has proposed definitions of both the excavation damage and other outside force categories to reflect this suggestion. APGA urges PHMSA to adopt the definition of excavation damage as shown in Table 1, Column 4. When the Incident Report instructions are next open for comment APGA urges PHMSA to make similar changes to the Incident Report Form instructions.

PIPE, WELD, OR JOINT FAILURE:

PHMSA proposal:

In this rulemaking PHMSA has proposed to keep the existing definition of Pipe, Weld or Joint Failure that includes leaks "resulting from failure of original sound material from force applied during construction that caused a dent, gouge, excessive stress, or other defect that eventually resulted in a leak." The current incident report instructions, however, instruct the operator to report Previous Mechanical Damage NOT Related to Excavation under Other Outside Force.

APGA Recommendation: APGA has proposed below to amend the Annual Report Form instructions for Pipe, Weld or Joint Failure to clarify that leaks resulting from failure of original sound material from force applied during construction that caused a dent, gouge, excessive stress, or other defect that eventually resulted in a leak should be reported as "Other Outside Force." APGA urges PHMSA to adopt the definition of Other Outside force as shown in Table 1, Column 4.

CORRROSION FAILURE:

PHMSA proposal:

PHMSA proposes to keep the existing definition of a corrosion-caused leak as leak resulting from a hole in the pipe or other component that was caused by galvanic, bacterial, chemical, stray current, or other corrosive action.

APGA Recommendation: APGA urges PHMSA to adopt the more detailed definition of a corrosion failure shown in Table 1, Column 4. This definition is based on the existing corrosion failure definition from the Distribution Incident Report form instructions with one exception: The instruction that "If the bonnet, packing, or other gasket has deteriorated before the end of its expected life but not due to corrosive action, it is classified as a Material Defect," "Material Defect" has been changed to "Other" to be consistent with the instruction for PIPE, WELD, OR JOINT FAILURE.

Cause Category	Annual Report Definition (from proposed rule 2/13/13)	Incident Report Definition	APGA Proposed Annual Report Leak Cause Definitions
FAILURE	leak resulting from a hole in the pipe or other component that was caused by galvanic, bacterial, chemical, stray current, or other corrosive action.	Corrosion includes a leak or failure caused by galvanic, atmospheric, stray current, microbiological, or other corrosive action, and, for the purposes of this reporting, includes selective seam corrosion. A corrosion leak is not limited to a hole in the pipe. If the bonnet or packing gland on a valve or flange on piping deteriorates or becomes loose and leaks due to corrosion and failure of bolts, it is classified as Corrosion. (If the bonnet, packing, or other gasket has deteriorated before the end of its expected life but not due to corrosive action, it is classified as a Material Defect.)	A leak caused by galvanic, atmospheric, stray current, microbiological, or other corrosive action, and, for the purposes of this reporting, includes selective seam corrosion. A corrosion leak is not limited to a hole in the pipe. If the bonnet or packing gland on a valve or flange on piping deteriorates or becomes loose and leaks due to corrosion and failure of bolts, it is classified as Corrosion. (If the bonnet, packing, or other gasket has deteriorated before the end of its expected life but not due to corrosive action, it is classified as a PIPE, WELD, OR JOINT FAILURE). Leaks resulting from any type of corrosion should be classified as corrosion, regardless of why the component corroded. Failure to coat or paint a pipe, poorly applied coatings, and damage from the coating that renders the coating ineffective are all to be classified as corrosion leaks if the pipe

Table 1: Leak Repair and Incident Cause Definitions

			eventually corroded.
NATURAL	leak resulting	This category includes all	A leak caused by outside
FORCE	from earth	outside forces attributable	forces attributable to
DAMAGE:	movements,	to causes NOT involving	causes NOT involving
l	earthquakes,	humans.	humans, such as Earth
	landslides,	Earth Movement NOT	Movement, Heavy
l	subsidence,	due to Heavy	Rains/Floods, Lightning,
	lightning, heavy	Rains/Floods refers to	Temperature, Thermal
l	rains/floods,	incidents caused by land	stress, Frozen
	washouts,	shifts such as	components, High Winds
l	flotation,	earthquakes, landslides,	etc. Earth movement
l	mudslide,	or subsidence, but not	includes but is not
	scouring,	mudslides which are	limited to earthquakes,
	temperature,	presumed to be initiated	landslides, subsidence,
	frost heave,	by heavy rains or floods.	washouts, mudslides,
	frozen	Heavy Rains/Floods refer	scouring. Lightning
	components,	to all water related	includes both damage
l	hiah winds, or	incident. While mudslides	and/or fire caused by a
	similar natural	involve earth movement,	direct lighting strike and
	causes.	report them here since	damage and/or fire as a
		typically they are an	secondary effect from a
		effect of heavy rains or	lightning strike in the
		floods.	area. Temperature
		Lightning includes both	refers to those causes
		damage and/or fire	that are related to
		caused by a direct	ambient temperature
		lighting strike and	effects, either heat or
		damage and/or fire as a	cold, where temperature
		secondary effect from a	was the initial cause.
		lightning strike in the	Thermal stress refers to
		area. An example of such	mechanical stress
		a secondary effect would	induced in a pipe or
		be a forest fire started by	component when some
		lightning that results in	or all of its parts are not
		damage to a pipeline	free to expand or
		system asset which	contract in response to
		results in an incident.	changes in temperature.
		Temperature refers to	Frozen components
		those causes that are	would include incidents
		related to ambient	where components are
		temperature effects,	inoperable because of
		either heat or cold, where	freezing and those due
		temperature was the	to cracking of a piece of
		initial cause.	equipment due to
		Thermal stress refers to	expansion of water
		mechanical stress	during a freeze cycle.

		induced in a pipe or	High Winds includes
		component when some	damage caused by wind
		or all of its parts are not	induced forces and
		free to expand or contract	damage caused by
		in response to changes in	impact from objects
		tomporaturo	hown by wind
		Emperature.	biown by wind,
		Frozen components	
		where components are	
		inoperable because of	
		freezing and those due to	
		cracking of a piece of	
		equipment due to	
		expansion of water during	
		a freeze cycle.	
		High Winds includes	
		damage caused by wind	
		induced forces. Select	
		this category if the	
		damage is due to the	
		force of the wind itself.	
		Damage caused by	
		impact from objects	
		blown by wind would be	
		reported as section G4	
		"Other Outside Force	
		Damage".	
EXCAVATION	leak resulting	This section covers	A leak resulting from
DAMAGE:	from damage	damage inflicted by the	damage inflicted by the
	caused by earth	operator, operator's	operator, operator's
	moving or other	contractor, or entities	contractor, or entities
	equipment	unrelated to the operator	unrelated to the operator
	tools or	during excavation that	during excavation
	vehicles	results in an immediate	activities that results in
	Include leaks	release of das Damade	an immediate release of
	from damage	from outside forces	das Excavation
	hy operator's	OTHER than excavation	activities include
	by operator s	that results in an	notheling and any type
		immodiato roloaco uco	of damage related to
		C2 "Natural Earoa	
		Domogo" or C4 "Other	backfilling a transh. If a
	the operator	Damage of G4 Other	backning a trench. If a
	the operator.	Outside Force as	the energies's energy
		appropriate. For a strike	the operator s crews of
		or other damage to a	contractor during
		pipeline or facility that	excavation, the leak
		results in a later release,	should be classified as

		report the incident in Section G4 as "Rupture or Failure Due to Previous Mechanical Damage."	excavation regardless of whether the operator was following policies and procedures defined by the operator. Leaks due to damage from outside forces OTHER than excavation should be included under "Natural Force Damage" or "Other Outside Force" as appropriate. If the coating is damaged and a corrosion leak develops, this should be classified as a corrosion leak.
OTHER OUTSIDE FORCE DAMAGE:	Include leaks caused by fire or explosion and deliberate or willful acts, such as vandalism.	This section covers incidents caused by outside force damage, other than excavation damage or natural forces. Nearby Industrial, Man- made or Other Fire/Explosion as Primary Cause of Incident applies to situations where the fire occurred before and caused the release. An example of such a failure would be an explosion/fire at a neighboring facility or structure that results in a release at the location of the incident. This section should not be used if the release occurred first and then the gas ignited. If the fire is known to have been started as a result of a lightning strike, the incident's cause should be classified under Section G2, "Natural Force Damage." Arson	A leak resulting from outside force damage, other than excavation damage or natural forces such as Nearby Industrial, Man-made or Other Fire/Explosion as Primary Cause of Incident (unless the fire was caused by natural forces, in which case the leak should be classified Natural Forces. Forest fires that are caused by human activity and result in a release should be reported as Other Outside Force), Damage by Car, Truck, or Other Motorized Vehicle/Equipmen

	events directed at		t NOT Engaged in
	harming the pipeline or		Excavation. Other
	the operator should be		motorized
	reported as "Intentional		vehicles/equipme
	Damage" in this section.		nt includes
	Forest fires that are		tractors, mowers.
	caused by human activity		backhoes.
	and result in a release		bulldozers and
	should be reported in this		other tracked
	section		vehicles and
	Damage by Car Truck		heavy equipment
	or Other Motorized		that can move
	Vehicle/Equipment NOT		Leaks resulting
	Engaged in Excavation		from vehicular
	An example would be		traffic loading or
	damage to a meter set		other contact
	caused by vehicle impact		(except_report as
	Other motorized		"Excavation
	vehicles/equipment		Damage" if the
	includes tractors		activity involved
	backhoes bulldozers and		digging drilling
	other tracked vehicles		boring grading
	and heavy equipment		cultivation or
	that can move. Include		similar activities.
	under this sub-cause	•	Damage by
	incidents caused by		Boats, Barges,
	vehicles operated by the		Drilling Rigs, or
	pipeline operator, the		Other Maritime
	pipeline operator's		Equipment or
	contractor, or a third party		Vessels so long
	and specify the		as those activities
	vehicle/equipment		are not
	operator's affiliation as		excavation
	appropriate. Pipeline		activities. If those
	incidents resulting from		activities are
	vehicular traffic loading or		excavation
	other contact should also		activities such as
	be reported in this		dredging or bank
	category. If the activity		stabilization or
	involved digging, drilling,		renewal, the leak
	boring, grading,		repair should be
	cultivation or similar		reported as
	activities, report in		"Excavation
	Section G3 "Excavation		Damage".
	Damage".	•	Previous
			Mechanical

	Damage by Boats,		Damage NOT
	Barges, Drilling Rigs, or		Related to
	Other Maritime		Excavation. A
	Equipment or Vessels		leak caused by
	Set Adrift or Which Have		damage that
	Otherwise Lost Their		occurred at some
	Mooring. This sub-cause		time prior to the
	includes impacts by		release, including
	maritime equipment or		prior outside force
	vessels that have lost		damage of an
	their moorings and are		unknown nature,
	carried into the pipeline		prior natural force
	by the current. This sub-		damage, and prior
	cause also includes		damage from
	maritime equipment or		other outside
	vessels set adrift as a		forces. Leaks
	result of severe weather		resulting from
	events and carried into		damage
	the pipeline by current or		sustained during
	high winds. In such		construction,
	cases, also indicate the		installation, or
	type of severe weather		fabrication of the
	event. Do not report in		pipe or a weld
	this sub-cause incidents		should be
	which are caused by		reported as "Pipe,
	impact of maritime		Weld or Joint
	equipment or vessels		Failure." Leaks
	while they are engaged in		resulting from
	their normal or routine		prior excavation
	activities; such incidents		damage should
	should be reported as		be reported as
	"Routine or Normal		"Excavation
	Fishing or Other Maritime		Damage" unless
	Activity NOT Engaged in		due to corrosion
	Excavation" so long as		in which case it
	those activities are not		should be
	excavation activities. If		reported as a
	those activities are		corrosion leak.
	excavation activities such	•	Intentional
	as dredging or bank		Damage/.
	stabilization or renewal,		Vandalism means
	the accident should be		willful or malicious
	reported in Section G3,		destruction of the
	"Excavation Damage".		operator's
	Routine or Normal		pipeline facility or
	Fishing or Other Maritime		equipment. This

	-		
	Activity NOT Engaged in		category would
	Excavation. This sub-		include pranks,
	cause includes incidents		systematic
	due to shrimping,		damage inflicted
	purseining, oil drilling, or		to harass the
	oilfield workover rigs,		operator, motor
	including anchor strikes,		vehicle damage
	and other routine or		that was inflicted
	normal maritime-related		intentionally, and
	activities UNLESS the		a variety of other
	movement of the		intentional acts.
	maritime asset was due	•	Terrorism
	to a severe weather		Terrorism, per 28
	event (this type of		C.F.R. § 0.85
	damage should be		General functions.
	reported under Damage		includes the
	by Boats, Barges, Drilling		unlawful use of
	Rigs, or Other Maritime		force and violence
	Equipment or Vessels		against persons
	Set Adrift or Which Have		or property to
	Otherwise Lost Their		intimidate or
	Mooring) or the incident		coerce a
	was caused by		government, the
	excavation activity such		civilian
	as dredging of waterways		population, or any
	or bodies of water (this		segment thereof,
	type of incident should be		in furtherance of
	reported under Section		political or social
	G3, "Excavation		objectives.
	Damage.").	•	Theft. Theft
	Previous Mechanical		means damage
	Damage NOT Related to		by any individual
	Excavation. This sub-		or entity, by any
	cause covers incidents		mechanism,
	where damage occurred		specifically to
	at some time prior to the		steal, or attempt
	release and would		to steal, the
	include prior excavation		transported gas or
	damage, prior outside		pipeline
	force damage of an		equipment.
	unknown nature, prior		
	natural force damage,		
	and prior damage from		
	other outside forces.		
	incidents resulting from		
	aamage sustained during		

	1		
		construction, installation,	
		or fabrication of the pipe	
		or a weld should be	
		reported under Section	
		G5, Material Failure of	
		Pipe or weid.	
		Intentional Damage	
		vandalism means willful	
		of malicious destruction	
		of the operator's pipeline	
		facility or equipment. This	
		category would include	
		pranks, systematic	
		barrage the approtor	
		narass the operator,	
		that was inflicted	
		intentionally, and a	
		variaty of other intentional	
		acts	
		Torrarism por 28 C E P	
		8 0 85 Conoral functions	
		3 0.05 General functions,	
		of force and violence	
		against persons or	
		property to intimidate or	
		coerce a government the	
		civilian population or any	
		segment thereof in	
		furtherance of political or	
		social objectives.	
		Operators selecting this	
		item are encouraged to	
		also notify the FBI.	
		Theft means damage by	
		any individual or entity.	
		by any mechanism.	
		specifically to steal, or	
		attempt to steal, the	
		transported gas or	
		pipeline equipment.	
PIPE, WELD,	leak resulting	This section includes	Leaks from a defect
OR JOINT	from failure of	leaks, ruptures or other	within the material of the
FAILURE :	original sound	failures from a defect	pipe, component or joint
	material from	within the material of the	due to faulty
	force applied	pipe, component or joint	manufacturing

during	due to faulty	procedures, defects
construction	manufacturing	resulting from poor
that caused a	procedures, defects	construction/installation
dent, gouge,	resulting from poor	practices, and in-service
excessive	construction/installation	stresses such as
stress, or other	practices, and in-service	vibration, fatigue and
defect that	stresses such as	environmental cracking.
eventually	vibration, fatigue and	Material defect means
resulted in a	environmental cracking.	an inherent flaw in the
leak. This	Fitting means a device,	material or weld/pipe
includes leaks	usually metal, for joining	fusion that occurred in
due to faulty	lengths of pipe into	the manufacture or at a
wrinkle bends,	various piping systems. It	point prior to
faulty field	includes couplings, ells,	construction, fabrication
welds, and	tees, crosses, reducers,	or installation.
damage	unions, caps and plugs.	Design defect means an
sustained in	Material defect means an	aspect inherent in a
transportation	inherent flaw in the	component to which a
to the	material or weld that	subsequent failure has
construction or	occurred in the	been attributed that is
fabrication site.	manufacture or at a point	not associated with
Also include	prior to construction,	errors in installation, i.e.,
leak resulting	fabrication or installation.	is not a construction
from a defect in	Design defect means an	defect." This could
the pipe	aspect inherent in a	include, for example,
material,	component to which a	errors in engineering
component, or	subsequent failure has	design.
the longitudinal	been attributed that is not	Leaks resulting from
weld or seam	associated with errors in	failure of original sound
due to faulty	installation, i.e., is not a	material from force
manufacturing	construction defect." This	applied during
procedures.	could include, for	construction that caused
Leaks from	example, errors in	a dent, gouge, excessive
material	engineering design.	stress, or other defect
deterioration,		that eventually resulted
other than		in a leak should be
corrosion, after		reported as "Pipe, Weld,
exceeding the		and Joint Failure." Any
reasonable		leak that is associated
service life, are		with a component or
Other		process that joins pipe
Uner		
		connections, flanges,
		wolde and pipe fusions
		that look on a result from
		inal leak as a result nom

			poor construction should be classified as "Pipe, Weld, and Joint Failure"." This includes leaks due to faulty wrinkle bends, faulty field welds, and damage sustained in transportation to the construction or fabrication site. Leaks from material deterioration, other than corrosion, after exceeding the reasonable service life, are reported under Other
EQUIPMENT FAILURE	leak resulting from malfunction of control/relief equipment including valves, regulators, or other instrumentation; stripped threads or broken pipe couplings on nipples, valves, or mechanical couplings; or seal failures on gaskets, O- rings, seal/pump packing, or similar leaks.	This section includes malfunctions of control and relief equipment (typically the result of failed and leaking valves), failures of threaded components and broken pipe couplings, including O- Ring failures, Gasket failures, thread failures, and failures in packing. Malfunction of Control/Relief Equipment Examples of this type of failure include failures on compressors, meters, or regulator stations where the failure resulted from a crack in a component or threads of a component such as nipples, flanges, valve connections, line pipe collars, etc. Include a description of the nature of the failure and apparent cause in the narrative (PART H). Examples of this type of	Leaks caused by malfunctions of control and relief equipment including regulators, valves, meters, compressors, or other instrumentation or functional equipment, Failures may be from threaded components, Flanges, collars, couplings and broken or cracked components, or from O- Ring failures, Gasket failures, seal failures, and failures in packing or similar leaks. Leaks caused by overpressurization resulting from malfunction of control or alarm device; relief valve malfunction: and valves failing to open or close on command; or valves which opened or closed when not commanded to do so. If overpressurization or

	n		1 .
		failure cause also include: overpressurization resulting from malfunction of control or alarm device; relief valve malfunction: and valves failing to open or close on command; or valves which opened or closed when not commanded to do so. If overpressurization or some other aspect of this incident was caused by incorrect operation, the incident should be reported under Section G7, "Incorrect Operation."	some other aspect of this incident was caused by incorrect operation, the incident should be reported under Section G7, "Incorrect Operation.".
INCORRECT	leaks resulting from inadequate procedures or safety practices, or failure to follow correct procedures, or other operator error	These types of incidents most often occur during operating, maintenance or repair activities. Some examples of this type of failure are improper valve selection or operation, inadvertent overpressurization, or improper selection or installation of equipment. The unintentional ignition of the transported gas during a welding or maintenance activity would also be included in this sub-cause. These types of incidents often involve training or judgment errors.	Leaks resulting from inadequate procedures or safety practices, or failure to follow correct procedures, or other operator error. It includes leaks due to improper valve selection or operation, inadvertent overpressurization, or improper selection or installation of equipment.
OTHER CAUSE	leak resulting from any other cause, such as exceeding the service life, not attributable to the above	This section is provided for incident causes that do not fit in any of the main cause categories in Sections G1 through G7. Leaks resulting from materials deteriorating	Leak resulting from any other cause, such as exceeding the service life, not attributable to the above causes.

causes.	after the expected life of	
	the materials are	
	classified as "Other	
	Cause".	

Part D

PHMSA Proposal:

PHMSA proposes to require reporting of the root cause of excavation damages as follows:

- a. Number of Excavation Damages by Root Cause:
- b. One-Call Notification Practices Not Sufficient: _____
- c. Locating Practices Not Sufficient: _____
- d. Excavation Practices Not Sufficient:
- e. Other:

APGA Recommendation: APGA notes that "a. Number of Excavation Damages by Root Cause:" is actually the heading for the four lettered items below it rather than the first of five items, therefore it should not be labeled "a" and the following four items should be labeled "a" through "d."

APGA also notes that the instructions do not provide examples of what types of causes go into each of these categories. APGA urges PHMSA to include in the instructions for Part D the following definitions developed by the Common Ground Alliance's (CGA) DIRT program:

One Call notification practices not sufficient. Examples:

• No notification made to the one-call center.

• Notification to the one-call center made but not sufficient: The excavator or caller who contacted the notification center did not provide sufficient information. Also includes situations where the excavator or caller did not provide sufficient advance notification time according to state law.

• Wrong information provided: An error occurred because an excavator or caller provided the wrong address for excavation to the one-call notification center, or there was a miscommunication between stakeholders.

Locating practices not sufficient. Examples:

• Facility could not be found/located: Type of facility, depth, or lack of records prevented locating of facility.

• Facility markings or location not sufficient: Includes all areas where marking was inaccurate or otherwise insufficient in designating the location of the buried facilities, but NOT covered by the following choices found elsewhere in Part I:

- Facility could not be found/located
- Incorrect facility records/maps
- Abandoned facility
- Facility was not located or marked: No locating or marking was completed prior to excavation activities.

• Incorrect facility records/maps: Incorrect facility records or maps led to an incorrect locate.

Excavation practices not sufficient

The excavator did not use proper care or follow the correct procedures when excavating near a facility. Examples:

• Failure to maintain clearance with powered equipment - as defined by applicable state regulations or underground facility owner.

• Failure to maintain the marks: The marks deteriorated or were lost and the excavator failed to request that they be restored/refreshed.

• Failure to support exposed facilities: Facility failed due to lack of support in accordance with generally accepted engineering practices or instructions provided by the facility operator.

• Failure to use hand tools where required.

• Failure to verify location by test hole (pot holing): Some state regulations define a "tolerance zone" around buried facilities and require that the accuracy of the facility marks be verified by exposing the facility by hand digging prior to excavation within the tolerance zone, or require hand digging or special precautions when working within the tolerance zone.

• Improper backfilling. Damage caused by improper materials (ex: large/sharp rocks) in the backfill or improper compaction of the backfill.

Other causes Examples:

• One-Call Center notification center error: Includes all issues related to the center such as incorrectly entered data, ticket transmission failures, stakeholder omissions (failure to transmit the ticket to a facility operator that should have received it), et al.

• Abandoned facility: An event caused by an abandoned facility issue. For example, a nearby abandoned facility may have been located instead of the active facility. Or, a facility may have been located as abandoned, but found active after the excavation exposed the facility.

• Deteriorated facility: Situations in which an excavation disrupts the soil around a facility resulting in damage, failure, or interruption of service. However, the facility was deteriorated (ex: corroded, graphitized, etc.) to the extent that the deterioration and not the excavation activity caused the facility issue.

• Previous damage: A significant period of time has passed from the actual damage to the failure or discovery of the damages.

Alternatively PHMSA could provide a cross reference and link to the CGA website for the CGA definitions.

Part E – Excess Flow Valve (EFV) Data

PHMSA Proposal:

PHMSA proposes to leave the current instructions for reporting EFV data unchanged as follows:

Report the number of EFVs installed on single-family residential services during the calendar year. Report the estimated total number of EFVs in the system at the end of the calendar year. (The "Estimated Total number of EFVs in the system" should include the "Number of EFVs installed on single-family residential services during the calendar year".)

APGA Recommendation:

It is clear from the instructions and the wording of the report form that the total number of EFV's installed during the year should only include EFVs installed on single-family residential services. It is not as clear what EFVs should be included in the count of the estimated number of EFVs in the system at the end of the calendar year. PHMSA should clarify if it is asking for the estimated count of all EFVs on all types of services or just EFVs on single-family residential services.

Also, the parenthetical in the instructions for Part E could be made clearer. Following the format in the instructions for Unaccounted For Gas in Part G, APGA suggests revising the Part E instructions as follows:

(Estimated Number of EFVs In System At The End Of The Previous Year plus Total Number of EFVs installed during the calendar year (including EFVs installed on single-family residential services) minus Total Number of EFVs removed from service during the calendar year equals Estimated Number of EFVs In System At End Of Year.)

Conclusion:

APGA supports the collection of timely pipeline safety data and encourages PHMSA to establish a data working group comprised of PHMSA, APGA, other pipeline trade associations, the National Association of Pipeline Safety Representatives and other stakeholders to advise on future changes to PHMSA's data collection activities.

APGA appreciates the opportunity to comment on this proposal. Any questions concerning these comments should be directed to John Erickson, APGA Vice President, Operations (202-464-2742, ext 1002 or jerickson@apga.org).

Ed Kalisco

Bert Kalisch, President and CEO